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SUMMARY

Batch sedimentation of non-colloidal particle suspensions is studied with nuclear magnetic resonance flow
visualization and continuum-level numerical modelling of particle migration. The experimental method
gives particle volume fraction as a function of time and position, which then provides validation data for
the numerical model. A finite element method is used to discretize the equations of motion, including an
evolution equation for the particle volume fraction and a generalized Newtonian viscosity dependent on
local particle concentration. The diffusive-flux equation is based on the Phillips model (Phys. Fluids A
1992; 4:30–40) and includes sedimentation terms described by Zhang and Acrivos (Int. J. Multiphase Flow
1994; 20:579–591). The model and experiments are utilized in three distinct geometries with particles
that are heavier and lighter than the suspending fluid, depending on the experiment: (1) sedimentation
in a cylinder with a contraction; (2) particle flotation in a horizontal cylinder with a horizontal rod; and
(3) flotation around a rectangular inclusion. Secondary flows appear in both the experiments and the
simulations when a region of higher density fluid is above a lower density fluid. The secondary flows
result in particle inhomogeneities, Rayleigh–Taylor-like instabilities, and remixing, though the effect in
the simulations is more pronounced than in the experiments. Published in 2007 by John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Suspensions of non-neutrally buoyant particles are found in a variety of industries from food
processing to microelectronics to chemical and petroleum. The particles will settle or float
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depending on whether they are lighter or heavier than the suspending fluid. In this paper,
we are interested in the sedimentation or flotation of particles in complex geometries with obstruc-
tions. For quiescent settling experiments in simple geometries, the behaviour of the particles is
monotonic and generally follows the 1-D theory of Kynch [1]. Once settling begins, three distinct
layers form: one of pure suspending fluid; one of suspension at the average concentration; and one
of sediment at or near the maximum packing. (The sediment layer can show some consolidation
over time, which can increase the particle concentration.) These three layers are all characterized
by a flat sharp interface, or volume fraction shock, for mono-modal particle distributions. For more
polydisperse systems, the suspension tends to size segregate creating multiple suspension layers
with different particle radii [2].

Numerical studies of suspension flow using continuum methods have been investigated by a
number of groups for suspensions of neutrally buoyant [3–7] and sedimenting particles [8–12].
These papers all use a single-phase description of the suspension and either a diffuse flux [13] or a
suspension balance constitutive equation [14]. Numerical methods used range from finite volume
to finite element and finite difference methods. The geometries previously investigated include
Couette, expansion flows, and flow down inclined channel, but did not include both sharp flow
feature and non-neutrally buoyant particles that can lead to instabilities.

Instabilities have been widely observed experimentally in suspension flow and are often seen
in neutrally buoyant particles in free-surface flows. These instabilities can be associated with
particle-scale phenomena such as fluid surface tension on the particle surfaces and normal forces.
Tirumkudulu et al. [15] and Timberlake and Morris [16] saw axial banding instabilities in par-
tially filled Couette devices in shear flow, whereas Timberlake and Morris [17] saw ribbing-type
instabilities in suspension films on an inclined plane. Tang et al. [18] observed viscous fingering
in a radial Hele–Shaw cell of a neutrally buoyant suspension displacing air. Linear stability theory
has been used to understand rimming flows in partially filled Couettes with free surfaces for
neutrally buoyant particles [19], flow down an inclined-plane for non-neutrally buoyant particles
[20], and flow in an inclined settler [21]. Linear stability in a fluidized bed at the dilute limit has
been investigated by Hernandez [22], who determined that instabilities occur as suspensions reach
higher concentration due to flow. Spectral simulations from this work showed Rayleigh–Taylor-
like instabilities at the unstable conditions predicted from the linear analysis. Similar instabilities
have been observed in inclined batch settlers where vortices appear at the suspension–pure fluid
interface. These instabilities have been analysed with analytical methods [2].

Here we use transient finite element simulations and nuclear magnetic resonance imaging to
examine instabilities that form through a combination of gravity and geometry, with no external
shear flow. Thus, the flow is purely driven by the sedimentation/flotation and the instabilities
themselves. Since this is primarily an inertial phenomena, we believe it is well suited to being
understood using a continuum approach. By inertial phenomena, we mean density driven since the
Reynold number based on the Stoke velocity and particle diameter is small, much less than one,
but the Grashof number, based on the density difference and the macroscopic length scale is in
the forties. This in turn, yields a large Rayleigh number for buoyancy-driven flow, defined as the
Grashof number divided by the Reynold number squared.

For the flows in the complex geometries described here, we get the primary flow from sedimen-
tation, but have additional secondary flows that are driven by Rayleigh–Taylor instabilities created
by regions of high-density fluid being above a low-density one. The instabilities lead to vortices,
remixing and viscous resuspension of the suspension [23] causing a more diffuse and irregular
interface between the suspension and the pure fluid, even for mono-modal suspensions.
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The first section of this paper details our experimental method using nuclear magnetic resonance
imaging (NMR) to determine the particle volume fractions as they evolve over time. In the
following section, we give a brief recap of the theory and numerical method, which can be found
elsewhere [12]. The problems investigated include sedimentation in a cylinder with a contraction,
particle flotation in a horizontal cylinder with a horizontal rod, and flotation around a rectangular
inclusion. Section 4 documents experimental details such as fluid and particle properties for
the three experiments of interest. We investigate particles that are heavier and lighter than the
suspending fluid depending on the experiment. The results from the experiments are presented and
compared to the numerical results. Finally, we conclude the paper with discussion and directions
for future work.

2. EXPERIMENTAL METHOD

Previous NMR studies have demonstrated that imaging may be used to study hindered settling,
and also to study interfacial broadening [24, 25]. Previously, we used NMR measurements of the
liquid fraction as a function of the vertical coordinate y and time t to measure the hindered settling
function for a range of concentration in a single-batch experiment [26]. These studies all involved
1-D imaging and flow geometries with constant cross-sectional area. The experiments described
here used 2-D imaging to visualize particle motion in more complex systems in a similar manner
to Rao et al. [12]

The NMR imaging experiments were performed in a 1.89 T horizontal-bore, super-conducting
magnet equipped with shielded gradient coils (Magnex, Inc., Boston, MA) and controlled by a
Tecmag (Houston, TX) Libra. The r.f. probe was a custom-built high-pass birdcage [27]. Spin
echo, spin warp imaging [28] was performed with an echo time of 4 ms and repetition times
of 50–100 ms. Since these repetition times are shorter than T1, low-angle pulses were used for
excitation and spoiling gradients were applied during the recycle time. Single vertical slices were
collected on resonance, and the imaging gradients were all less than 2G/cm. Details of the method
can be found in Callaghan [28].

3. NUMERICAL MODEL

3.1. Equations

As discussed in Rao et al. [12], a model based on Phillips et al. [13] and Zhang and Acrivos [8]
was used to understand how the particle concentration evolves for problems with non-neutrally
buoyant particles in both quiescent settling and flotation. Since the particles have a different density
than the suspending fluid, the density depends on the local particle concentration. If �f and �s are
the mass concentrations of the fluid phase and particle phase, respectively, then, the total density
becomes

�= �f + �s = (1 + �)�0f + ��0s = �0f + �(�0s − �0f ) = �0f + ��� (1)

where � is the particle-phase volume fraction, �0f and �0s are the pure phase densities, and �� is
the difference between the solid particle density and the pure fluid density. The variable density
leads to a buoyancy-driven flow source term in the momentum equation. The momentum equation
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has a generalized Newtonian viscosity, which depends on the local particle concentration via the
Krieger model [29]:

�
��

�t
+ �v · ∇v + ∇ p − ∇ · (�(∇v + ∇vt )) + ���g = 0 (2)

� = �0

(
1 − �

�m

)−n

(3)

where v is the suspension velocity, p is the dynamic pressure, g is the gravitational acceleration,
and t is the time, �0 is the suspending fluid viscosity, n is a parameter that is used to best fit the
viscosity data (1.82 is used in this work), and �m is the particle concentration at maximum packing.

Since the density is variable, the full continuity equation must be used:

��

�t
= −∇ · �v (4)

If we substitute in Equation (1) for the definition of density in terms of particle volume fraction and
the two pure phase densities, we get the divergence of velocity in terms of an evolution equation
for particle volume fraction:

�0f∇ · v = ��

(
��

�t
+ ∇ · (v�)

)
(5)

The parenthetical expression on the left-hand side of Equation (5) is defined as the particle flux:

��

�t
+ ∇ · (v�) = 1

�0s
∇ · Js (6)

Substituting Equation (6) into Equation (5) yields a source term that arises in the continuity
equation based on the variable density, related to the particle flux, Js.

∇ · v = ��

�0s�
0
f

∇ · Js (7)

Though both the particle and suspending fluid are incompressible, the continuity equation is no
longer solenoidal due to the fact that the density varies with local volume fraction.

The particle concentration is determined from substituting the incompressibility constraint,
Equation (7), into the particle conservation equation (6) [see [12] for details]:

��

�t
+ v · ∇� = −

(
�0f + ���

�0s�
0
f

)
∇ · Js = �

�0s�
0
f

∇ · Js (8)

The particle flux, Js, has three terms involving variations of shear-rate invariant and concentration,
viscosity and gravity:

Js
�0s

= −(�D�∇(�̇�) + �2�̇D�∇(ln �)) + f vs� (9)

D� = 1.05�D�, D� = 0.651a2 (10)
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where the diffusion coefficients used are obtained from Tetlow et al. [30]. In addition, a small
amount of numerical diffusion in a Fickian form must be added to stabilize the concentration
fronts that occurs. Values of the numerical diffusivity are on the order of two orders of magnitude
smaller than the diffusivities given in Equation (7).

The shear-rate tensor and its magnitude are defined in the standard way:

�̇ = (∇v + (∇v)t ), �̇ =
√

1
2 (˜

�̇,
˜
�̇) (11)

The buoyancy terms in the flux comprised a Stokes velocity and a hindered settling function:

vs = 2

9

a2(�0f − �0s )g

�0
, f = �0(1 − �av)

�
(12)

where average concentration, �av, is the initial concentration.

3.2. Numerical method

The momentum equation (2), the continuity equation (4), the particle conservation equation (5),
and shear-rate invariant equation (8) are discretized with the Galerkin finite element method.
The unknowns are velocity, pressure, particle volume fraction, and the scalar shear-rate invariant.
Velocity unknowns are interpolated with biquadratic shape functions, while bilinear shape functions
are used for all other variables. Rectangular Lagrangian elements are used. For the momentum
equation, time integration is carried out using a second-order Crank–Nicholson finite difference
discretization. For the concentration equation, because of the sharp fronts created during settling,
a Taylor–Galerkin method is used [31].

We solve the nonlinear problem using a Newton–Raphson linearization scheme, which results
in a matrix of unknowns that we solve simultaneously using direct or iterative solvers. Details of
the finite element discretization and linearization scheme can be found in our previous paper [12].

4. RESULTS

4.1. Batch sedimentation in a cylinder with a contraction

4.1.1. Problem description. A quiescent settling experiment was carried out in a cylinder with a
contraction roughly two-thirds of the way up to investigate the effect of a horizontal obstruction on
particle settling. The geometry and dimensions can be seen in Figure 1. The suspension was made
of PMMA particles in a suspending fluid composed of 22% water and 78% glycerol. The glycerol
solution was formulated such that the PMMA particles had a slightly higher density than the
suspending fluid, and would settle out relatively slowly. The suspension properties are presented
in Table I.

4.1.2. Simulations and comparison with experiment. Axisymmetric finite element simulations were
carried out for this geometry and material properties. The mesh and boundary conditions are given
in Figure 1. The mesh contains 7073 nodes and 1720 elements, yielding 19 597 unknowns. We
specify no slip at the solid boundary and symmetry about the centreline. The initial concentration
distribution is homogeneously distributed at 19.2% by volume.
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Figure 1. Finite element mesh and boundary conditions for particles settling in a cylinder with a contraction.

Table I. Density, viscosity, and particle data for cylinder experiment.

Quantity Value

Density PMMA, �0s 1.18 g/cm3

Density glycerol/water solution, �0f 1.1755 g/cm3

Viscosity glycerol/water solution, �0 0.184 g/cm s
Maximum volume fraction, �max 0.64
Initial volume fraction, �0 0.192
Particle radius, a 0.0397 cm

Results from NMR imaging and finite element simulation are given in Figure 2. For the finite
element simulations, we see clear fluid regions developing at the top of the cylinder and directly
under the contraction. A zone of maximum packing forms at the bottom of the container as
particles pile up. Over time, the clear layers under the contraction release a bubble of fluid that
moves down the gravimetric potential towards the top of the cylinder. Once the blob of pure fluid
reaches the suspension–pure fluid interface near the top of the container, its momentum begins
to deform it, causing the interface to bulge upward. The layer of high-density suspension over a
lower-density blob of pure fluid causes a Rayleigh–Taylor instability, which results in remixing and
recirculation near the suspension–pure fluid interface. This causes pure fluid to move downward
and suspension to move upward, counter to their natural inclination. Once the interface moves
below the obstruction, the settling becomes monotonic. However, because of the instability, the
final distribution of particles is slightly concave up instead of flat as it would be for settling in a
cylinder without an obstruction.
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Figure 2. Particles settling in a cylinder with a contraction for a 0.192 volume fraction of
0.0397 cm radius PMMA particles in glycerol/water suspending fluid. Particles are slightly
heavier than the fluid: (a) NMR imaging at times t = 105, 175, 315, and 560 s and (b) finite

element simulations at t = 110, 190, 310, and 590 s.

The NMR imaging show results qualitatively similar to the modelling though the discrete
particles do not give as much detail as the continuum modelling. Initially, we get clear zone
forming underneath the horizontal surfaces and particles settling on the bottom of the container.
Over time, we can see that the suspension–pure fluid interface become V-shaped near the centre
of the cylinder and is not flat. The final distribution of particles is also concave up. Although
still images cannot capture the movement, a video produced from the NMR images clearly shows
recirculation occurring in the upper portion of the container.

4.2. Quiescent particle flotation in a horizontal wide gap Couette

4.2.1. Problem description. Batch flotation of PMMA particles in a 96% glycerol, 4% water
solution, was carried out in a horizontal wide gap concentric Couette in order to investigate the
effect of a circular obstruction on settling behaviour. Properties for the particles and suspending
fluid are given in Table II. The particles are slightly less dense than the suspending fluid, causing
them to float. The Couette geometry can be seen in Figure 3. The inner rod is one-fourth the size
of the outer cylinder. Both are stationary throughout the experiment.

4.2.2. Simulation and comparison with experiment. The finite element mesh and boundary con-
ditions are given in Figure 3. We specify no slip at the inner rod and the outer cylinder surfaces.
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Table II. Density, viscosity, and particle data for Couette experiment.

Quantity Value

Density PMMA, �0s 1.18 g/cm3

Density glycerol/water solution, �0f 1.253 g/cm3

Viscosity glycerol/water solution, �0 5.889 g/cm s
Maximum volume fraction, �max 0.64
Initial volume fraction, �0 0.20
Particle radius, a 0.0397 cm

Figure 3. Finite element mesh and boundary conditions for particles settling in a Couette apparatus.

The mesh contains 4452 nodes, 1084 elements and 18 950 unknowns. The initial conditions are a
constant volume fraction of 20%.

Figure 4 gives results from this mesh and from the NMR imaging for particle volume fraction.
The modelling results also have velocity vectors superimposed on the concentration fields. The
simulation results show an initially perfectly homogeneous particle distribution. After about 100 s,
we see particles piling up below the rod and at the top of the cylinder. Complementary to this,
clear zones of fluid form on top of the rod and at the bottom of the cylinder. What happens next is
quite interesting. We see the clear fluid above the rod and the packed particles below the rod start
shedding blobs of material, with the clear fluid sinking and the packed suspension rising. This leads
to competing Rayleigh–Taylor instabilities, which create velocity fields that change direction first
going upwards and then downwards, looking much like flapping wings when viewed dynamically.
After 2600 s, the particles have all reached the top of the container, forming a packed zone with
a flat interface and clear fluid below.

The results from the NMR imaging corroborate the simulations results. The suspension is
initially well mixed and homogeneously distributed. Regions of maximum packing are shown in
purple, white shows the pure fluid, and yellow shows the suspension. Over time, particles pile up

Published in 2007 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:723–735
DOI: 10.1002/fld



INSTABILITIES DURING BATCH SEDIMENTATION IN GEOMETRIES CONTAINING OBSTACLES 731

Figure 4. Results for 0.20 volume fraction PMMA particles suspended in a glycerol/water solution.
Particles are floating in a horizontal Couette apparatus. Zones of maximum packing are seen at the
top of the cylinder and beneath the inner cylinder: (a) NMR imaging t = 68, 204, 340, and 1156 s and

(b) simulation t = 53.4, 303.4, 740.9, and 1777.5 s.

at the top of the container and below the rod, with clear fluid zones occurring above the rod and
at the bottom of the Couette. We observe evidence of the instabilities seen in the simulation, since
we can see low-concentration areas in the suspension similar to the blobs of pure fluid coming
off the top of the rod. The final distribution of particles shows all particles settling at the top of
the Couette with clear fluid below. Note that the timescales for the simulation and the experiment
differ, but the simulations do capture the overall nonlinear phenomenology.

4.3. Quiescent particle flotation in a cylinder with a rectangular inclusion

4.3.1. Problem description. Particle flotation in a cylinder with a rectangular inclusion was inves-
tigated. The inclusion is actually another cylinder, but when seen in a 2-D axisymmetic slice, looks
like a rectangle. The geometry and dimensions can be seen in Figure 5. The particles were glass
microballoons (GMBs), which have a very low density. The suspending fluid used is 50-HB-500
Ucon lubricant, which has a density similar to water making the particles float. The initial volume
fraction is almost 40%. Table III gives material properties for the suspension.

4.3.2. Simulation and comparison with experiment. The finite element mesh and boundary con-
ditions can be seen in Figure 5. The mesh comprised 8777 nodes and 2100 elements, resulting
in 24 421 unknowns. The boundary conditions are simply no slip at the solid surface. The initial
condition is a constant particle fraction at 39.6% by volume.
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Figure 5. Finite element mesh and boundary conditions for particle flotation around a square inclusion.

Table III. Density, viscosity, and particle data for square
inclusion experiment.

Quantity Value

Density GMB, �0s 0.210 g/cm3

Density 50-HB-400, �0f 1.041 g/cm3

Viscosity 50-HB-400 solution, �0 1.5 g/cm s
Maximum volume fraction, �max 0.64
Initial volume fraction, �0 0.396
Particle radius, a 0.00295 cm

Figure 6 shows results for the particle volume fractions for the simulation and NMR imaging.
For the simulation, the suspension starts out perfectly well mixed. After 810 s, we see particles
getting trapped under the rectangular inclusion and a layer of maximum packing forming at the
top of the cylinder. Clear zones have begun to form as well, as the bottom of the container and
at the top of the rectangular inclusion. The concentrated suspension under the rectangle spawns
streams of material into the narrow channel between the inclusion and the wall of the cylinder.
Rayleigh–Taylor instabilities again occur as regions of low-density packed GMBs lie below higher-
density suspension. This instability leads to remixing and chaotic flow profiles. Similarly, material
streams off the top of the rectangle and moves down the narrow channel creating another zone of
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Figure 6. Particle flotation around a rectangular inclusion for 0.396 volume fraction of GMB in Ucon
lubricant: volume fraction profiles as a function of time. Time stamp indicates elapsed time: (a) NMR

imaging t = 204, 884, 1020, and 6858 s and (b) simulation t = 0, 810, 1080, and 7290 s.

instability where the heavier pure fluid is above the suspension. The same relative trends continue
at 1080 s. At the final time plane shown, 7290 s, we can see that the clear zone above the rectangle
has been replaced by suspension packed with particles to maximum packing. The instability below
the inclusion remains and continues to spawn material that sinuously travels towards the top of
the cylinder.

For the NMR imaging results, we see similar trends, though quantitative agreement is still
elusive. The suspension starts off well mixed. After 884 s, we see clear layer forming above the
inclusion and at the bottom of the container. Zones of maximum packing can be seen below the
rectangle and at the top of the container. We can see some graininess that could be associated with
streams of material remixing back into the suspension. This streaming phenomena is much easier
to see when the images are viewed dynamically as a movie. Similar streaming trends continue at
1020s. The final frame, 6868s, shows that the top instability is gone and only the bottom instability
remains. The shape of the packed zone under the inclusion is more curved in the experiment than
the simulation.
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5. CONCLUSIONS

We have used NMR imaging and finite element modelling to help us understand the fluid mechanics
involved in batch flotation and settling of suspensions in complex geometries. Particle settling in
a cylinder with a contraction, particle flotation in a horizontal Couette, and particle flotation
in a cylinder with a rectangular inclusion were investigated. It was determined that the complex
geometries led to Rayleigh–Taylor instabilities, chaotic secondary flows, and remixing of segregated
layers. Particle profiles were significantly different from what would be expected from monotonic
batch settling experiments. This work underscores the usefulness of both NMR imaging and
computational modelling for understanding the complex behaviour of suspensions of non-neutrally
buoyant particles in geometries with inclusions and sharp corners and can help us design better
manufacturing processes involving suspensions in non-monotonic geometries. For future work, we
would like to investigate the effect of Reynolds and Grashof number on the instabilities. Preliminary
experimental work has shown that the instabilities seen in the contracted cylinder at the parameters
used here are not seen for heavier particles or more concentrated suspensions.

The instabilities seen in the NMR imaging often occur at shorter timescales from the simulation
results though similar phenomenology for both simulation and experiment. For future work, we
would like to achieve a more quantitative agreement between simulation and experiment.
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